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FOREWORD

* ) This report was submitted by Thiokol Corporation/Huntsville Division at
- Huntsville, Alabama 35807 under Contract Number F04611-75-C-0059, Job

; Order 314810GV with the Air Force Rocket Propulsion Laboratory, Edwards
? AFB, California 93523,

A This technical report has been reviewed and is approved for publication

and distribution in accordance with the distribution statement on the
cover and on the DD Form 1473,

E o ‘%WV - Z,.-f (M
& ~/Janes L. Koury, GSZ13 Lee G. Meverg/Ls-14, Chief
k" Project Manager Air launch Motor Section

k! FOR THE COMMANDER

Char €es faﬂ h5-T6, Iirector

k. . Solid Recket D1C15}¢n

- = NOTICES

o When U.S. Government drawings, specifications, or other data are used for

gi% any purpose other than a definitely related government procurement operation,
s the Government thereby incurs no responsibility nor any obligation whatsoever,
'@m and the fact that the Government may have formulated, furnished, or in any way

supplied the said drawings, specifications or other data, is not to be regarded
by implication or otherwise, or in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be related thereto,
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gpropellant without benefit of vacuum was evaluated by manufacturing two
motors, Technology in ambient-temperature (80°F) propellants developed
under AFRPL contract was satisfactorily transfered and combined with in-
house technology to produce improved propellant,

f
Components and other manufacturing techniques evaluated were consumable
grain-forming mandrels, igniter initiators and pyrotechnics, nozzle ablative
materials, nozzle configuration, steel and aluminum stock tubing cases,
aluminum impact extruded cases, metal and plastic laminated cases,
techniques for joining nozzles and forward closures to cases, thermoplastic
and mastic case insulations and adhesives,

Performance analyses were made to determine effects of nozzle throat
erosion rate, case strength level, thrust profile, and propellant formula-
tion on missile performance. Cost and weight data were combined to deter-
mine the best combinations of forward closure with its joining technique,
case, and nozzle with its joining technique,
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SECTION 1
INTRODUCTION

The objective of this program is to identify materials, designs and
manufacturing techniques that will significantly reduce the cost of tactical
rocket motors (4-inch to 8-inch diameter) in production, and to demonstrate
in pilot production quantities the validity of the identities made by study and
analysis,

Design simplicity is perhaps the greatest single contributor to the
development of high production rate, low cost solid rocket motors, Design
simplicity implies fewer components, fewer suppliers, less inspection, and
fewer manufacturing steps, all of which contribute to lowering motor cost.
Inasmuch as possible, commercially available materials with relaxed manu-
facturing tolerances and surface finishes will be used, The use of O-rings
and their specially prepared seal surfaces will be minimized, Design con-
cepts will emphasize high volume manufacturing processes and minimum
inspection requirements, without compromising safety, reliability, and long
service life, Component functions will be combined wherever possible,
Selected designs will be made available to potential subcontractors so that
competitive bids for motor production can be obtained, Also, designs will
include provisions for automated quality control functions where feasible,
Data generated by Booz, Allen under Contract F04611-72-C-0074 will be
used during the design phase, Design analyses will include detailed cost
estimates in order to establish the cost effectiveness of each of the candidate
concepts and methods., Tests will be designed and conducted to demonstrate
the capability of selected designs to meet the temperature/vibration environ-
mental requirements for air-launched tactical motors. Reliability and safety
are paramount in the manufacture of rocket motors for manned weapon systems,
To this end, development of highly repeatable, reliable techniques incorporating
safe designs and processes, a minimum of hand assembly operations, and
minirnum manufacturing costs was stressed,

The program has three phases, of which the first, Phase I, is complete.
The first phase involvec the evaluation of design options for each motor com-
ponent, Motor component designs and specific fabrication techniques were
screened both by analysis and by component tests in order to distinguish those
concepts and methods that meet performance requirements at acceptable cost
levels, The second phase will consist of selecting optimum combinations of
those concepts/methods determined to be successful under Phase I, These
optimum combinations will be fabricated and tested in twelve motors of 4-inch
diameter, Results from Phases I and Il will be compiled and used to devise
a manufacturing plan for Phase III, The third and final phase will be a pilot
production run of 120 motors at a rate of 30 motors/day in each of four
different runs, with time for analysis and modification between runs,
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Analyses and tests conducted under Phase | were designed to determine
the most effective way to implement recommended manufacturing methods,
design techniques, and new materials for reducing the costs of air launched

tactical motors,

Particular attention was paid throughout Phase I to the

requirements of the air launch environment and its effect on proposed designs,
methods, and materials. Candidate component designs, new materials, and
specific manufacturing techniques were screened during Phase I in two ways —

analyses and tests.
reliability, etc.),

Concepts were analyzed for performance (stress, ballistics,
Engineering judgement was used to screen concepts on the

basis of their actual or potential merit, Concepts (materials, designs, and
manufacturing techniques) were selected for detailed cost analysis, Analytical
screening of concepts by cost and performance produced a set of component
design and manufacturing process options. The most promising concepts in
this set were selected (with AFRPL concurrence) for component tests. Results
of these tests were then used to select candidate component concepts for inclu-
sion in Phase Il tests of complete motors,

Activities of Phase I are described in this Phase Report, which is
divided into fifteen sections with four appendices,

Section
Number

I

Il
111
Iv
v
Vi
vl
VIII
IX

XI
XI1
XIII
X1v
Xv

Appendix

A
B
C
D

Information in Appendix D is classified "Confidential" and is contained in a
separate volume (Volume 2) of this report,
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SECTIONII
SUMMARY AND CONCLUSIONS

The following paragraphs summarize the investigations performed
during Phase 1 and their findings. Details of the work are found in subse-
quent sections,

BASELINE MOTOR

At the beginning of the program, a 4-inch diameter motor was designed
that incorporated typical low cost components, Preliminary design calculations
showed that the required missile performance of burnout velocity, impact veloc-
ity and range could be provided,

The margin between delivered and required performance was not great,
which portended difficulties when incorporating even lower cost concepts, such

as lower strength case material and nozzles with less erosion resistance,

PROPELLANT

Technology in ambient-temperature cured Fropellantl (i.e., 80°F)
developed under AFRPL contract (Reference II-1)! was satisfactorily trans-
fered to Thiokol and combined with in-house technology to produce improved
propellant, The result is that ambient-temperature cured propellants are
available for further use and evaluation and that future system evaluations
can be made with a firm data base,

Improved propellant cure reproducibility and cure completeness were
obtained with the identification that moisture effects were significant, It was
found that detrimental moisture effects can be alleviated with mixing under a
vacuum at elevated temperature prior to addiny curing agent, The mix is
then cooled with the cure catalyst addition delayed until late in the mix cycle
to increase pot life,

The ambient-tomperature cured propellant used in this program met
the goals set for it:

Goals Demonstrated
Cure Temperature "Ambient" 80°F
Cure Time <9 days 8 - 10 days
Strain at Max, Stress, -65°F >25% 36%
Max, Stress, 77°F >100 psi 140 psi
Modulus, 77°F >400 psi 618 psi
Temperature Capability <65 to 165°F

1. References are given at the end of this section,

7




POUR CASTING \ !

An attractive low cost grain manufacturing technique is "pour casting",
wherein propellant is metered into the motor without benefit of the motor
chamber being at vacuum conditions. The propellant is simply poured into i
the case. Success of this technique depends on a propellant with very low 4
viscosity (2 to 3 kilopoise) and low yield values, Available ambient-tempera- ‘
ture cured propellants have end-of-mix viscosities of 12 to 20 kilopoise.

Two full-scale motors were pour cast, one with an ambient-temperature
cured propellant with a viscosity of about 15 kilopoise, and the other with an
elevated-temperature cure (145°F) propellant with about 3 kilopoise viscosity,
There was not a great difference in the final grain quality between the two
motors; both were considerably worse than usually considered acceptable
in the solid propellant industry. One motor was successfully static fired,
The other experienced an over-pressurization which cannot be attributed to
a single cause, Thus, at the present time, there are mixed results about the
necessary grain quality for this class of motors.

A < 4

‘J There is a need to study the effects of mechanical energy input to the

‘ motor during casting to achieve satisfactory grain quality. The ultimate
casting technique may combine elements of pure pour-casting and vacuum
casting.

FULL-SCALE MOTORS TESTS

Eleven full-scale (25 1b, ) four-inch diameter motors were static fired
to evaluate grain manufacturing techniques, nozzle ablative material, consum-
able mandrel with integral igniter, igniter configuration, and ambient-temper-

ature cured propellant,

One of the motors successfully tested incorporated:

Nozzle ablative material that can be transfer molded
Grain manufactured with leave-in-place foam mandrel
Integral igniter with magnesium-teflon pyrotechnics
Thermoplastic insulation samples !
Ambient-temperature cured propellant

o 0 00 0

CONSUMABLE MANDREL

Polyurethane foam was suitably fashioned into mandrels for evaluation
in full-scale motor firings, These tests demonstrated satisfactory motor
operation with a single pyrotechnic charge (integral with the mandrel) to
consume the mandrel and ignite the propellant, Presence of the mandrel
modulated the initial high pressure., Two motors were successfully cast
with ambient-temperature cured propellant and foam mandrels, which were
left in the motors.
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Hangfires resulted when the gap between propellant and mandrel was
closed through differential thermal expansion or because cure shrinkage was
not sufficient to separate the two, It was demonstrated in a full-scale motor
test that increased energy output from the igniter can alleviate the hangfire
without causing high pressure,

There is a need for additional experimental investigation to achieve
satisfactory ignition when the consumable mandrel is used to form the grain,

loNITER

Analysis confirmed Reference II-2 that bi-metallic wire could not serve

as a direct ignition source for the propellant because of large power require-
ments, Laboratory tests revealed that bi-metallic wire was impractical as an
initiator for other pyrotechnics because of fragility, The lowest cost initiator
found was an Atlab electric match which demonstrated satisfactory character-
istics in laboratory evaluation and full-scale motor firings.

Atlas matches can be obtained with one amp no-fire characteristics,
but not with one amp-one watt no fire, Thus safety considerations can
influence selection of an initiator ~ Atlas match for about $0.50 or one amp-
one watt initiators for about $7.00 (the latter being identified as part of the
investigation).

Magnesium-teflon pellets were selected as the primary pyrotechnic
charge because of cost (lower than the common BKNOj pellets), low gas-
solids ratio (which is beneficial when incorporating a consumable mandrel
to reduce maximum pressure), low sensitivity to moisture when compared
with BKNO,, and acceptable delay times. Magnesium-teflon pellets with
Atlas m.tcg initiators provided satisfactory ignition in full-scale motor tests,

NOZZLE

Six nossle ablative materials were identified through analysis and
experiments to offer up to 50% reduction in cost from the glass-phenolic
molding compound used as a baseline material. All six had satisfactory
erosion resistance and structural capabilities,

An extensive analytical evaluation was performed which culminated
in the rational selection of the best materials, Glass, cellulose, and wood
flour as fillers in phenolic resin were selected for Phase Il testing on the
basis of this study., Factors in the study were erosion resistance (sub-scale
meotor screening and full-scale motor testing), structural capabilities (stress
snalysis), availability (resin, reinforcement, compounding and fabrication),

and basic configuration. Other features of the selected nozzles were contoured

oxit sections and aluminum support structure,




CASE

Steel and aluminum stock tubing were analytically evaluated as case
material, Both are practical if performance losses (particularly with steel)
can be tolerated, Some performance loss (using 7075-T6 as baseline) can be
3 expected with aluminum tubing because the high strength 7075-T6 alloy was d
r available with only one wall thickness and unless pressure capability exactly
matches this wall thickness, then the higher strength is of no benefit,

On the other hand, 7075-Té6 (as well as other alloys) can be furnished
as impact extruded cases with integral forward closure or aft closure, with

the wall thickness dictated by the specific motor design. For this improved
performance capability there is an added cost,

i A detailed evaluation of impact extruded aluminum cases was made;
b cost and design details were a result, Alloy 2014-T6 was found to be the
most attractive from a cost standpoint,

Metal strip laminate cases (with appropriate closures) provide the
lowest weight and greatest internal volume, but at the highest cost for the
systems studied, Filament wound composite cases probably have the highest
performance/lowest cost potential of all cases examined; however, there are
technical misgivings about their current environmental and proof-testing
aspects, Additional experimental evaluation should be performed on the
filament wound case for air launch application,

CLOSURE/JOINING TECHNIQUE

Steel, plastic and aluminum closures are all practical at reasonable
cost, but some are more promising than others. The closures and joining tech-
niques must be compatible with the case approach, Plastic closures are
generally the least expensive,

ST

PO ?;{-;,a- »
e i R

Five joining techniques (friction welding, electromagnetic forming with
bond, weldbonding, taper bondline, and rivet bonding) were experimentally

- f‘" evaluated, These five and six others (laser weld, electron beam welding in

Z and out of vacuum, straight bondline, snap ring retainer, and threaded joint)
kb, were evaluated for costs and usability, Five techniques cost less than $1, 00
,?‘*‘ per joint (adhesive bonding with tapered and straight bondline, electromagnetic

b
A o

forming with bond, friction welding, electron beam welding out-of-vacuum)

when applied to a high volume production run, Friction welding for empty ’
motors and electromagnetic forming and adhesive bonding for either loaded or

empty motors are the lowest cost joining techniques,

i ST
SOV

&- S

T

Costs of eleven closure arrangements and nine of the above joining tech-
niques were combined to determine the lowest cost combination., Friction
welding aluminum is the best for empty motors, Adhesive bonding with a
straight (i, e,, constant diameter)bondline and plastic closure is best for a

lcaded motor.
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Stress analyses were performed on two test chambers (friction welded
and weldbonded) to assist in evaluating test results, 4

Difficulty was encountered in the bond of plastic to metal with room-
temperature cured adhesive where the motor was to be fired st 170°F,

INSULATION/LINER

.
AL e

: Three basic areas were investigated: thermoplastics for injection or 5
transfer molding integral case and dome ingulations; mastic insulations for 3
application directly into case; liner for use as back-up bonding agent,

1 It was experimentally determined that glass-filled thermoplastics can
be used as case insulation, Polycarbonate, nylon and ABS were investigated,
Polycarbonate had the best erosion resistance; ABS had the lowest cost, 1
. Polycarbonate has the potential for lowest cost because less is required for

‘ equal thermal protection. All demonstrated satisfactory bonding character-

\ istics when using appropriate bonding agents, Low cost adhesives were
identified to bond propellant to the thermoplastic and thus, liner, as commonly
used in solid propellant rocket motors, is not needed, However, an ambient-
temperature cured liner was found to be the most cost effective adhesive to
bond the thermoplastic to the case,

An ambient-temperature cured mastic insulation was formulated and
: experimentally verified, Three filler materials~ silica, carbon, glass - were
1% evaluated, Carbon was selected for Phase II testing because it results in the
i lowest cost, Liner is not needed between the insulation and propellant, Lab-
- oratory tests included cure catalyst and cure agent studies, bond to propellant
p and to case, effects of bond promoter, physical and thermal properties, pro-
k. cessing characteristics (pot life, cure time, viscosity), and qualitative erosion
{ resistance,

An ambient-temperature cured liner was formulated and experimentally

verified for use as a bond promoter, if needed, Laboratory evaluation con- 1
sisted of cure agent and cure catalyst studies, propellant-to-liner bond and !
effects of bond promoter,

A cost and performance analysis determined that case-bonded pro-
pellant grains with thermoplastic insulation is the lowest cost system,

PERFORMANCE AND COST TRADE-OFFS

Performance analyses were made to determine effects of nossle
throat erosion rate, case strength level, thrust profile and propellant formu-
lation on missile performance, Case strength and propellant formulation are
strong drivers on missile performance, Nozzle throat erosion rate is less
influential. High burnout velocity and high velocity out of a launch tube are
incompatible characteristics, Steel cases cause significant performance
penalties,

i s e e Hi
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Cost and weight data were combined to determine the best combinations

of forward closure with its joining technique, case, and nozzle with its joining
technique (Table II-1),

Three motor configurations were formulated (Table II-2) that com-

bined the best weight/cost considerations for manufacture and evaluation in
Phase II (consistent with program funding limitations).

NEEDED ADDITIONAL INVESTIGATIONS

Several areas for additional investigations were identified during the

Phase I studies:

a. Experimentally determine igniter/mandrel interactions in a
systematic manner to devise » combination that completely
eliminates the hangfire tendencies.

b, Experimentally and analytically determine the mechanical
energy input spectrum optimum for reducing number of voids
in propellant that is pour cast out-of-vacuum,

c. Experimentally and analytically determine the grain quality
requirements,

d. Perform a cost comparison of propellants that cure for 8 to 10
days at ambient temperature (80°F) with those that cure one
to three days at elevated temperature (145°F), Include the
total manufacturing process and facilities costs in the analysis,,

e. Conduct an evaluation of room-temperature cure adhesives for
bonding plastics to metals that provide high strength at elevated
temperatures (170°F),

REFERENCES
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" Demonstration of Ambient-Temperature Cure Propellant",
Aerojet Solid Propulsion Co., Report No. AFRPL-TR-73-68,
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"Improved Low Cost Rocket Motor Processing and Component
Development Study', AFRPL-TR-75-34, Fred Marks and Edward
Gonzales, Booz, Allen Applied Research, July 1975,
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TABLE II-2

PHASE II MOTOR CONFIGURATIONS

Feature

Propellant

Grain Configuration

Grain Manufacturing

Mandrel

Igniter Pyrotechnics

Forward Closure

Forward Joining T echnique

Case

Aft Joining Technique
Nozzle Ablative
Nozzle Support Shell

Case Insulation

Configuration
No. 1 No. 2 No. 3
Ambient- Ambient- Ambient-
Temp. cured Temp. cured Temp. cured
Case Bonded Case Bonded Case Bonded

Pour casting
with vibration

Foam, leave-
in-place

Magnesium-
teflon pellets

Plastic/
taper
Taper-bond

Aluminum
stock tubing

EMF -Bond
Wood-flour
Aluminum

Polycarbonate

Pour casting
with vibration

Foam, leave-
in-place

Magnesium -
teflon peliets

Alum (FW)

Friction Weld

Aluminum
stock tubing

EMF -Bond
Cellulose
Aluminum

ABS

Pour casting
with vibration

Foam, leave-
in-place

Magnesium-
teflon pellets

Alum (FW)

Friction Weld

Aluminum
stock tubing

Snap Ring
Glass
Aluminum

Carbon Mastic
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SECTION III

BASELINE MOTOR PRELIMINARY DESIGN

One of the first activities in Phase I was to formulate a preliminary
design of a rocket motor which would provide the specified missile performance
and would incorporate typical low-cost components, This design then served
as a reasonable starting point from which to evaluate changes in propellant
burn rate, case strength level, nozzle throat erosion rate, insulation/liner
thickness, and nozzle exit diameter,

Performance requirements for the 4-inch motor were updated;

Burnout Velocity (ft/sec) 3290

Impact Velocity (ft/sec) 2820
Slant Range (ft) 12, 000
Launch Conditions
Altitude (ft) 6000
Velocity (ft/sec) 760
Angle (deg) -30
Misaile Inert Weight (1b)
Warhead 45
Fins 1.29
Motor External Configuration
Outside Diameter (in) 4,0
Overall Length (in) 53
Aft End Reduced Cross-
Section
Diameter (in) 2.6 and 3.29
Length (in) 8.0

Design pressure factors were calculated:

MEOP/Max Pressure at 70°F 1, 225
Burst Pressure/Max Pressure
at 70°F 1. 714

which were based on:

Temperature Range (MIL-R -25532) -65 to 160°F
Temperature Coefficient of Pressure, L 0. 001 per °F
Burst Pressure/MEQP (MIL-R-25532) 1.4
Variability of Maximum Pressure (3-sigma) 12%

1. Burnout velocity is final velocity of missile and includes the initial launch
velocity (burnout velocity equals launch velocity plus AV imparted by
rocket motor),

17
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UNCLASSIFIED

As a precursor to the baseline motor design, estimates of propellant
bore strain were made, Calculations were made for a case-bonded grain
and for a free-standing grain whefe the case was slipped onto the grain,
Results are shown on Figures III-1 and III-2, where pressurization and
thermal strains are a function of web fraction, It was decided to limit total
strains to 20%, which limits the web fraction to 0. 70 for a case-bonded grain.
Strains are less than 20% for a free-standing grain at 0, 70 web fraction,

Drag charact:ristics of a 4-inch-diameter missile were determined
as shown in Appendix C, The missile was launched with an initial flight angle
of minus 28 degrees as a result of preliminary studies (N, B,, slant range
of 12,000 ft,, launch altitude of 6, 000 ft. corresponds to a line-of-sight
launch angle of minus 30 deg. without consideration of gravity effects during
flight,)

A motor design (Thiokol designation TX-649), describedin subsequent
figures and tables, was formulated to meet the aforementioned missile per-
formance requirements, Preliminary calculations revealed that an aft-
diameter of 2, 6 inches made it unlikely that performance would be met.
Thus, further calculations were made with 3,29 inch aft missile diameter,

The baseline motor utilizes an aluminum case, an sll.plastic nozzle,
polyisoprene insulation, anda 12% aluminum HTPB propellant formulation.
The grain design (see Figure III-3) is a cylindrical perforate in the forward
end transitioning to two longitudinal slots in the aft end of the motor. The
longitudinal slots have a 7.5° taper onthe sides, This taper is to provide
the increasing radii needed to decrease the indvced strains as the configura-
tion transitions from the 14% web fraction beneatt the slots to the 70% web
fraction of the cylindrical perforate,

The case design is based on the strength level (78, 000 psi ultimate)
of 7075-T6 aluminum, The nozzle erosion characteristics are based on
demonstrated performance of molded glass phenolic. The motor case insula-
tion is TI-R300, an asbestos filled polyisoprene rubber, The liner is a
HTPB system compatible with both the propellant formulation and the insula-
tion. A complete summary of performance and general motor specifications
are presented in Table III-1. A summary of propellant characteristics used
in the design are shown in Table III-2, A predicted pressure-time, thrust-
time history is shown on Figure III-4, A plot of missile velocity versus time
is shown on Figure III-5,

Design of the baseline motor was based on a burning rate range
availability of 0. 39 in/sec at 1000 psia to 0,44 in/sec at 1000 psia, Plots
of the variation of burning rate with pressure are shown on Figure Illl-6 for
three rates, As may be seen from Figure III-6, as the basic rate increased,
so did rate exponent, The change in exponent as the base rate increased had

18
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'
TABLE lll.1
BASELINE MOTOR DESIGN .
A Motor Performance Parameters
g (70°F)
Sea Level Vacuum
Web Burning Time, sec 1.8 1.8
Average Thrust, 1b 3076 3178
i Average Pressure, psia 2263 2263
8 ~ Maximum Pressure, psia 2975 2975
Total Impulse, lb-sec 6013 6225
Total Impulse/ Total Weight, lb-sec/lb (Flight) 167.5 173.5
3 Propellant Weight/Total Weight (Flight) 0. 642 0. 642
General Specifications
l'k . Dimensions, in
: y Overall Length 55,25
‘ Outside Diameter 4,0
U Weights, 1b
“’ Propellant 23,05
{; Chamber 7. 01
m Nozzle 3,55
z’ Liner and Insulation 2,02 ) :
% Igniter _0,25
TOTAL WEIGHT (Flight) 35,88 c ;
Blow-Out Mandrel 0,66
TOTAL WEIGHT 36.54
VEHICLE FLIGHT WEIGHT (LAUNCH) 82, 25

(Continued on next page)
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Table IlI-1, (Continued).

Trajectory
Slant Range (ft)

Burnout Velocity (ft/s=c)
Impact Velocity (ft/sec)
Initial Flight Angle (deg)

Propellant Geometrical Parameters

Configuration---Case Bonded, Internal Burning, CP with two longitudinal
slots

Propellant Outside Diameter, in 3.58
Volumetric Loading Density, % 0. 85
Web Fraction 0. 70
Geometrical Web Thickness, in 1,253
Nominal Liner Thickness, in 0,010
Initial Burning Surface/Throat Area 342
Length-Average Port Area/Throat Area ' 2,04

Chamber

Type Cylindrical

Material 7075/ T6 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>